
BCX Getting Started Guide
For newbies by a newbie

This is an in-depth guide about BCX, explaining what exactly is BCX, how to get it up
and running, and how to create some of the basic examples that will help you create
amazingly fast, yet tiny applications.

The examples that you will find in this document were created for BCX 2.06 and LCC-
Win32 Build 02.19.01. Tools used include the Microsoft Dialog Editor and Dialog
Converter (DC).

Created February 04, 2001
Updated February 19, 2001

Put together by DL

- Page I -

What is BCX?
BCX is a “BASIC-like” to “C” translator utility, which means it will not translate any of
your existing code directly. In some cases, it might be able to do so, however it was not
designed to do so. Instead, BCX is a superset of several BASIC programming languages
tied together with the power of C and the Win32 API. With it, you will be able to create
powerful 32-bit, standalone Windows applications, such as GUI, DLL, console-mode,
and even CGI.

How Much Does I t Cost?
Great news! BCX is completely free for personal and professional development. It is
currently under active development and periodic updates are available for free from the
BCX homepage.

What Do I Need To Get Star ted?
BCX was really designed for LCC-Win32, which is a freeware “C” compiler. So you will
have to download the package, which is roughly 2.8 MB. It contains everything you need
to compile 32-bit “C” applications. You will also need to have the BCX package, which
includes examples, utilities, and documentation. Finally, a willingness to learn the syntax
is required.

Anything Else I Need to Know?
Yes, BCX creates 32-bit “C” source code, so you will have to be running Microsoft
Windows 95 or higher. Also, some knowledge of the Win32 API would be helpful,
because I use many references to it.

Must Visit L inks
BCX Homepage http://www.users.uswest.net/~sdiggins/bcx.htm
Contains official BCX distribution package, containing examples for DLLs, GUI, and
console-mode applications. BCX translator, documentation, Microsoft Dialog Editor, and
some batch files for compiling are included.

BCX Newsgroup http://groups.yahoo.com/group/bcx
Find the latest beta versions of BCX, samples created by other BCX users, post bug
reports, suggestions, and comments.

LCC-Win32 Homepage http://www.cs.virginia.edu/~lcc-win32
Get the latest version of the LCC-Win32 compiler here. Site also contains documentation
on the LCC-Win32 compiler and the Win32 API available in Microsoft Word 97 format.

MSDN Library http://msdn.microsoft.com/library/default.asp
Microsoft’s vast library, which contains technical programming information, sample
code, documentation, articles, and reference guides! It is constantly being updated and
contains the latest information on the Win32 API.

- Page II -

Lets Get Star ted!
The first thing to do is to download BCX and LCC-Win32 (LCC from now on). Saves
those to a directory of your choice and let the installer do its thing. After you’ve installed
BCX and LCC, it is best to setup your system so you can use it globally. This will allow
you to compile your program from any directory instead of copying your source code to
the LCC and BCX directory every time.

Setting I t Up Globally For Windows 95/98/SE/ME Systems
To do this, you will have to modify the autoexec.bat file, which is usually placed at the
root of your C drive. If you dual boot, it may be on another drive. Find this file and open
it up with your favorite editor. You should see something similar to the following:

@ECHO OFF
 SET PATH=C: \ Wi ndows;

Now modify the PATH to include your LCC and BCX path. This is what mine looks like:
 @ECHO OFF
 SET PATH=c: \ wi nnt ; c: \ wi nnt \ syst em32; d: \ bcx\ bi n; d: \ l cc\ bi n

Because I keep the BCX translator BC.EXE in the directory d:\bcx\bin, I modified the
PATH to point to that directory. Save these settings and the next time you launch
windows, it should recognize the file paths.

Setting I t Up Globally For Windows 2000 Systems
In Windows 2000, you will need to bring up the Environment Variables dialog, so do this
by pressing down on the Windows Key and then press the Pause/Break key.

Now click on the tab labeled Advanced. You should see the “Environment Variables”
button. Click that and the Environment Variables dialog will appear.

There should be two Frames, one for the current user and the other for the system.
Modify the current user by clicking on the variable “Path” . Now modify it to point to
your BCX and LCC directory. It should look the same as the Windows 95 path above,
containing the string d:\bcx\bin;d:\lcc\bin.

- Page III -

Custom Batch Files
I have three batch files that I use for compiling my projects. They are lcall.bat (for
console applications), ldall.bat (for dynamic libraries), and lwall.bat (for GUI
applications). It will call the BCX translator, then it will have the C source code compiled
into an object file, where it will finally be linked into an EXE.

I do not delete any of the created files such as .c, .lib, .obj, and .exp because they are
useful when you want to link object files with another program or when trying to call a
DLL using the standard calling convention.

-- lcall.bat --
@ECHO OFF
I F NOT EXI ST %1. bas GOTO TheEnd
bc. exe %1
l cc. exe - ansi c - O - Zp1 - unused %1. c
l cc l nk. exe - x - subsyst em consol e - o %1. exe - s %1. obj %2 %3 %4 %5 %6 %7
%8 %9
PAUSE
: TheEnd

-- ldall.bat --
@ECHO OFF
I F NOT EXI ST %1. bas GOTO TheEnd
bc. exe %1
l cc. exe - ansi c - O - Zp1 - unused %1. c
l cc l nk. exe - x - dl l - o %1. dl l - s %1. obj %2 %3 %4 %5 %6 %7 %8 %9
PAUSE
: TheEnd

-- lwall.bat --
@ECHO OFF
I F NOT EXI ST %1. bas GOTO TheEnd
bc. exe %1
l cc. exe - ansi c - O - Zp1 - unused %1. c
l cc l nk. exe - x - subsyst em wi ndows - o %1. exe - s %1. obj %2 %3 %4 %5 %6 %7
%8 %9
PAUSE
: TheEnd

- Page IV -

Lets Compile Our First Console App
It is usually for many people to create what is known as a “Hello World!” application. It
is a very simple example that demonstrates the size of an executable for a specific
language. In this example, we want to create the file helloc.bas. So start your favorite
editor, and type the following code (without line numbers):
1 LOCAL szHel l o$
2
3 szHel l o$ = " Hel l o Wor l d! "
4 PRI NT szHel l o$

After you’ve typed the code, save it to the file helloc.bas and compile it using our new
console application batch file.

l cal l . bat hel l oc

That will create a file helloc.exe which is 3,104 bytes. When executed, it will print the
text "Hello World!” . Now lets explain what we just created. Each line of code will be
referenced by its corresponding line number on the left. For example, LOCAL szHello$
is line 1.

Line 1 creates the string szHello. BCX automatically creates the string with a default size
of 2,048 characters. That means we can have a string of up to 2,047 characters because
the last character is used for the NULL character. The NULL character tells you that you
have reached the end of the string.

Line 3 puts the phrase “Hello World!” into the string szHello.

And finally, Line 4 displays the contents held within szHello to the screen.

Note: This is a Windows console application! That means it will only run under the

command line available within Windows and not MS-DOS.

- Page V -

GUI Anyone?
Now it’s time to create our first GUI application which will be a plain window with a
static control displaying the message “Hello World!” . To do this, we’ ll be using a tool
called Microsoft Dialog Editor 3.10.164. This allows you to create GUI applications
really quick using a form designer. The next tool we’ ll be using is called DC 1.2, which is
a Microsoft Dialog to BCX code converter. It is currently available from the BCX
Newsgroup.

Start Microsoft Dialog Editor and you’ ll see two windows. A parent form and a floating
toolbar containing the standard Windows controls. Create a new dialog by selecting the
File menu, then selecting the menu item, New.

A new dialog will appear, bearing the caption “Dialog Title” . Double-click the dialog and
a Dialog Styles window will appear. Make sure that “Visible” is unchecked.

Once its setup, click OK.

Now we’re back to our form. Drag a static control to the form by selecting the Static
button on the toolbar (there is a big “A” on it). Bring up the static control’s properties and
select the type “center” . Press OK and you should return to the form design mode.

Now modify the static’s caption to say “Hello World!” .

Since we have our dialog designed, we are ready to save it and turn it into working BCX
code. So save the dialog as “hellow.res” and it will create a file named “hellow.rc” . The
RC file is very important because it is the file that contains the information about our
newly created window.

Hopefully you downloaded a copy of DC, so switch to the directory that contains the file
“hellow.res” and shell out to the command prompt. Type the following commands:
 dc. exe hel l ow - s

When it runs, you should see the message:
 - l oadi ng di al og f i l e
 - f ound f or m1
 - f ound f or m1. st at i c1

- Page VI -

If you see the above message, DC was successful in creating the BCX source code, so the
file hellow.bas should exist. If we open hellow.bas, we should see the following code
(comments were added to make it easier to understand):

' t i t l e of di al og and capt i on
CONST Capt i onName1$ = " Di al og Ti t l e"
CONST Cl assName1$ = " Mai n Cl ass Name"

' gl obal i nt eger s used t o scal e t he di al ogs t o s i ze
GLOBAL BCX_Get Di aUni t
GLOBAL BCX_cxBaseUni t
GLOBAL BCX_cyBaseUni t
GLOBAL BCX_Scal eX
GLOBAL BCX_Scal eY

' s t andar d wi nmai n f unct i on f ound i n ever y 32- bi t GUI appl i cat i on
FUNCTI ON Wi nMai n()
LOCAL Wc AS WNDCLASS
LOCAL Msg AS MSG

' check i f anot her appl i cat i on wi t h t he same cl ass name exi st s
I F Fi ndFi r st I nst ance(Cl assName1$) THEN EXI T FUNCTI ON

' def aul t wi ndows c l ass, cont ai ni ng gener al i nf or mat i on about t he
pr ogr am
Wc. st y l e = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS
Wc. l pf nWndPr oc = WndPr oc1
Wc. cbCl sExt r a = 0
Wc. cbWndExt r a = 0
Wc. hI nst ance = hI nst
Wc. hI con = LoadI con (NULL, I DI _APPLI CATI ON)
Wc. hCur sor = LoadCur sor (NULL, I DC_ARROW)
Wc. hbr Backgr ound = Get SysCol or Br ush(COLOR_BTNFACE)
Wc. l pszMenuName = NULL
Wc. l pszCl assName = Cl assName1$
Regi st er Cl ass(&Wc)

' cr eat e appl i cat i on wi ndow and st at i c cont r ol
For mLoad(hI nst)

' pr ocess i ncomi ng wi ndows messages and al l ow swi t chi ng wi t h t ab key
WHI LE Get Message(&Msg, NULL, 0, 0)
 I F NOT I sWi ndow(For m1) | NOT I sDi al ogMessage(For m1, &Msg) THEN
 Tr ansl at eMessage(&Msg)
 Di spat chMessage(&Msg)
 END I F
WEND
FUNCTI ON = Msg. wPar am
END FUNCTI ON

- Page VII -

' handl es al l wi ndows messages
CALLBACK FUNCTI ON WndPr oc1()
SELECT CASE Msg
 CASE WM_CLOSE
 LOCAL i d
 i d = MessageBox(_
 hWnd, _
 " Ar e you sur e?" , _
 " Qui t Pr ogr am! " , _
 MB_YESNO | MB_I CONQUESTI ON)
 I F i d = I DYES THEN Dest r oyWi ndow(hWnd)
 FUNCTI ON = 0
 CASE WM_DESTROY
 Post Qui t Message(0)
 FUNCTI ON = 0
END SELECT
FUNCTI ON = Def Wi ndowPr oc(hWnd, Msg, wPar am, l Par am)
END FUNCTI ON

' moves wi ndow t o t he cent er of t he scr een
SUB Cent er Wi ndow(hWnd AS HWND)
DI M wRect AS RECT
DI M x AS DWORD
DI M y AS DWORD
Get Wi ndowRect (hWnd, &wRect)
x =(Get Syst emMet r i cs(SM_CXSCREEN) - (wRect . r i ght - wRect . l ef t)) / 2
y =(Get Syst emMet r i cs(SM_CYSCREEN) - _
 (wRect . bot t om- wRect . t op+Get Syst emMet r i cs(SM_CYCAPTI ON))) / 2
Set Wi ndowPos(hWnd, NULL, x, y , 0, 0, SWP_NOSI ZE | SWP_NOZORDER)
END SUB

' sear ches f or appl i cat i ons wi t h an exi st i ng c l ass
FUNCTI ON Fi ndFi r st I nst ance(Appl Name$)
LOCAL hWnd AS HWND
hWnd = Fi ndWi ndow(Appl Name$, NULL)
I F hWnd THEN
 FUNCTI ON = TRUE
END I F
FUNCTI ON = FALSE
END FUNCTI ON

SUB For mLoad(hI nst as HANDLE)
' scal e di al og
BCX_Get Di aUni t = Get Di al ogBaseUni t s()
BCX_cxBaseUni t = LOWORD(BCX_Get Di aUni t)
BCX_cyBaseUni t = HI WORD(BCX_Get Di aUni t)
BCX_Scal eX = BCX_cxBaseUni t / 4
BCX_Scal eY = BCX_cyBaseUni t / 8

- Page VIII -

' cr eat e mai n wi ndow
GLOBAL For m1 AS HWND

For m1 = Cr eat eWi ndow(Cl assName1$, Capt i onName1$, _
DS_MODALFRAME | WS_POPUP | WS_CAPTI ON | WS_SYSMENU, _
6 * BCX_Scal eX, 18 * BCX_Scal eY, (4 + 160) * BCX_Scal eX, _
(12 + 54) * BCX_Scal eY, NULL, NULL, hI nst , NULL)

' cr eat e st at i c cont r ol
GLOBAL St at i c1 AS HWND
CONST I D_St at i c1 = 101

St at i c1 = Cr eat eWi ndowEx(0, " st at i c" , " Hel l o Wor l d! " , _
WS_CHI LD | SS_NOTI FY | WS_VI SI BLE | SS_CENTER | WS_GROUP, _
0 * BCX_Scal eX, 20 * BCX_Scal eY, 160 * BCX_Scal eX, _
8 * BCX_Scal eY, For m1, I D_St at i c1, hI nst , NULL)

' f or ce st at i c t o use wi ndows 95- l i ke f ont s
SendMessage(St at i c1, WM_SETFONT, _
Get St ockObj ect (DEFAULT_GUI _FONT) , MAKELPARAM(FALSE, 0))

Cent er Wi ndow(For m1) ' Cent er our For m on t he scr een
Updat eWi ndow(For m1) ' For ce updat e of al l cont r ol s
ShowWi ndow (For m1, SW_SHOWNORMAL) ' Di spl ay our cr eat i on!
END SUB

With DC, it’s very easy to create applications quickly! Now to compile this, save the file
as hellow.bas and shell to the command prompt. Change directories to the path where you
saved hellow.bas then type the following:

l wal l . bat hel l ow. bas

That will create a windows application that is only 5,152 bytes! Now lets do an in-depth
overview of what each code actually does.

The CaptionName1 specifies the title of our window. The ClassName1 specifies the class
of the window. The class name can be any name registered with the RegisterClass
function or any of the predefined control-class names.

CONST Capt i onName1$ = " Di al og Ti t l e"
CONST Cl assName1$ = " Mai n Cl ass Name"

Defining these integers as global allows us to use the BCX scale anywhere in our
program. You will see these variables again in the FormLoad procedure.

GLOBAL BCX_Get Di aUni t
GLOBAL BCX_cxBaseUni t
GLOBAL BCX_cyBaseUni t
GLOBAL BCX_Scal eX
GLOBAL BCX_Scal eY

Defines the function WinMain.

FUNCTI ON Wi nMai n()

- Page IX -

Notice that we do not have to insert any of the parameters. BCX automatically fills
WinMain with the following variables:

HI NSTANCE hI nst , / / handl e t o cur r ent i nst ance
HI NSTANCE hPr ev, / / handl e t o pr evi ous i nst ance
LPSTR CmdLi ne, / / poi nt er t o command l i ne
i nt CmdShow / / show st at e of wi ndow

Now we have to define two very important structures. The WNDCLASS structure
contains the window class attributes that are registered by the RegisterClass function. The
MSG structure contains message information from a thread's message queue.

LOCAL Wc AS WNDCLASS
LOCAL Msg AS MSG

By calling our own FindFirstInstance function, we are checking if the program has been
already executed and still running. If the window is found, the application will
automatically terminate. If you would like to see multiple instances of your application,
comment the line below.

I F Fi ndFi r st I nst ance(Cl assName1$) THEN EXI T FUNCTI ON

The follow lines are used to fill the contents of our WNDCLASS structure. This is very
important because this allows us to register our class so our window can actually be used.
If you have several windows with the same class name, you do not need to re-register the
class because it has already been registered. Windows with the same class name will
point to the same WindowProc procedure.

Wc. st y l e = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS
Wc. l pf nWndPr oc = WndPr oc1
Wc. cbCl sExt r a = 0
Wc. cbWndExt r a = 0
Wc. hI nst ance = hI nst
Wc. hI con = LoadI con (NULL, I DI _APPLI CATI ON)
Wc. hCur sor = LoadCur sor (NULL, I DC_ARROW)
Wc. hbr Backgr ound = Get SysCol or Br ush(COLOR_BTNFACE)
Wc. l pszMenuName = NULL
Wc. l pszCl assName = Cl assName1$
Regi st er Cl ass(&Wc)

Sends the hInstance value to the FormLoad procedure. This procedure is similar to the
Form_Load found in Visual Basic. It contains information that will create our window
and static control.

For mLoad(hI nst)

- Page X -

This will retrieve messages from the calling thread's message queue and places it in the
specified structure, Msg. Then it will dispatch messages to a window procedure.

WHI LE Get Message(&Msg, NULL, 0, 0)
I F NOT I sWi ndow(For m1) | NOT I sDi al ogMessage(For m1, &Msg) THEN

 Tr ansl at eMessage(&Msg)
 Di spat chMessage(&Msg)
 END I F

WEND
FUNCTI ON = Msg. wPar am
END FUNCTI ON

The WndProc1 function is an application-defined callback function that processes
messages sent to a window. Notice the return is CALLBACK FUNCTION. This is
VERY important. It allows us to do two things. First, without it, applications will NOT
run on Windows 98 SE.

CALLBACK FUNCTI ON WndPr oc1()

Secondly, it allows BCX to insert the following code:

HWND hWnd, / / handl e of wi ndow
UI NT Msg, / / message i dent i f i er
WPARAM wPar am, / / f i r s t message par amet er
LPARAM l Par am / / second message par amet er

Now that we can receive messages, we would like to process them. So this allows us to
process the messages that we only want to see.

SELECT CASE Msg

Our first message that we want to process is WM_CLOSE. When a user clicks on the
“X” button on a Window’s Titlebar or tries to close an application, the application sends
the WM_CLOSE message. What we want to do is process the message, and ask if the
user really wants to close. If the user wants to end the application, then we will send a
WM_DESTROY, which you see as the DestroyWindow function.
 CASE WM_CLOSE
 LOCAL i d

 i d = MessageBox(_
 hWnd, _
 " Ar e you sur e?" , _
 " Qui t Pr ogr am! " , _
 MB_YESNO | MB_I CONQUESTI ON)
 I F i d = I DYES THEN Dest r oyWi ndow(hWnd)
 FUNCTI ON = 0

- Page XI -

The WM_DESTROY message is sent when a window is being destroyed. It is sent to the
window procedure of the window being destroyed after the window is removed from the
screen. Since it is being destroyed, we call the function PostQuitMessage that indicates to
Windows that a thread has made a request to terminate (quit).

CASE WM_DESTROY
Post Qui t Message(0)
FUNCTI ON = 0
END SELECT

To be fair, we have to tell which messages were not processed. We do this by calling the
DefWindowProc function. The DefWindowProc function calls the default window
procedure to provide default processing for any window messages that an application
does not process. This function ensures that every message is processed.

FUNCTI ON = Def Wi ndowPr oc(hWnd, Msg, wPar am, l Par am)
END FUNCTI ON

Now here, this procedure centers the window by obtaining the height and width of the
window. Then it obtains the height and width of the screen. It subtracts them and divides
the difference by 2. Then the window is updated with the new positions.

SUB Cent er Wi ndow(hWnd AS HWND)
DI M wRect AS RECT
DI M x AS DWORD
DI M y AS DWORD
Get Wi ndowRect (hWnd, &wRect)
x =(Get Syst emMet r i cs(SM_CXSCREEN) - (wRect . r i ght - wRect . l ef t)) / 2
y =(Get Syst emMet r i cs(SM_CYSCREEN) - _
 (wRect . bot t om- wRect . t op+Get Syst emMet r i cs(SM_CYCAPTI ON))) / 2
Set Wi ndowPos(hWnd, NULL, x, y , 0, 0, SWP_NOSI ZE | SWP_NOZORDER)
END SUB

Here we have a function that simply searches for a window with an existing class name.
If the class name is found, then it returns a TRUE value. If it does not exist, it will return
a FALSE value. This implementation however is not the best method because another
window could have the same exact class name.

FUNCTI ON Fi ndFi r st I nst ance(Appl Name$)
LOCAL hWnd AS HWND
hWnd = Fi ndWi ndow(Appl Name$, NULL)
I F hWnd THEN
 FUNCTI ON = TRUE
END I F
FUNCTI ON = FALSE
END FUNCTI ON

We are now at the final procedure. FormLoad basically creates our window and control.
You can specify which types of design styles you want to you in this procedure.

SUB For mLoad(hI nst as HANDLE)

- Page XII -

The GetDialogBaseUnits function returns the dialog box base units used by Windows to
create dialog boxes. Windows use these units to convert the width and height of dialog
boxes and controls from dialog units to pixels, and vice versa.

BCX_Get Di aUni t = Get Di al ogBaseUni t s()
BCX_cxBaseUni t = LOWORD(BCX_Get Di aUni t)
BCX_cyBaseUni t = HI WORD(BCX_Get Di aUni t)
BCX_Scal eX = BCX_cxBaseUni t / 4
BCX_Scal eY = BCX_cyBaseUni t / 8

The CreateWindow function creates a window that has a double border. This is our main
window with the title "Dialog Title and the class name "Main Class Name". The
GLOBAL Form1 variable allows us to use Form1 anywhere in our application.

GLOBAL For m1 AS HWND

For m1 = Cr eat eWi ndow(Cl assName1$, Capt i onName1$, _
DS_MODALFRAME | WS_POPUP | WS_CAPTI ON | WS_SYSMENU, _
6 * BCX_Scal eX, 18 * BCX_Scal eY, (4 + 160) * BCX_Scal eX, _
(12 + 54) * BCX_Scal eY, NULL, NULL, hI nst , NULL)

This function will create our static window. Static controls use the class name, “static” .
Notice that you will see Form1 as the fourth to the last parameter. This means that Static1
is a child control of Form1. Also note that Static1 has a ID which is 101 and a global
variable stored in Static1.

GLOBAL St at i c1 AS HWND
CONST I D_St at i c1 = 101

St at i c1 = Cr eat eWi ndowEx(0, " st at i c" , " Hel l o Wor l d! " , _
WS_CHI LD | SS_NOTI FY | WS_VI SI BLE | SS_CENTER | WS_GROUP, _
0 * BCX_Scal eX, 20 * BCX_Scal eY, 160 * BCX_Scal eX, _
8 * BCX_Scal eY, For m1, I D_St at i c1, hI nst , NULL)

Now many people do not like the old Windows 3.1 look, which is bold fonts. So we can
force our control to use the standard GUI font instead by calling SendMessage with the
WM_SETFONT message. The GetStockObject function retrieves the default font for
user interface objects such as menus and dialog boxes.

SendMessage(St at i c1, WM_SETFONT, _
Get St ockObj ect (DEFAULT_GUI _FONT) , MAKELPARAM(FALSE, 0))

Before we want to show our new creation, we want to update it before the user can see
the window. The first thing we do is center the window. Because we did not specify a
WS_VISIBLE flag for our window, the user will not have to see the window reposition
itself. The next thing we do is call UpdateWindow. The UpdateWindow function updates
the client area of the specified window by sending a WM_PAINT message to the
window. And finally, since we are displaying the window for the first time, we call
ShowWindow with the SW_SHOWNORMAL flag.

Cent er Wi ndow(For m1)
Updat eWi ndow(For m1)
ShowWi ndow (For m1, SW_SHOWNORMAL)
END SUB

- Page XIII -

Creating a console app that uses a DLL
In this little lesson, we’ ll be modifying our original console application to get the string
information from a DLL, rather than having it hard coded into the application itself. The
first thing we need to do is create the DLL. I’ m going to name this DLL hellod. So
startup your favorite editor, creating the file hellod.bas, and type the following code:
 $DLL

 FUNCTI ON Hel l oWor l d$() EXPORT
 FUNCTI ON = “ Hel l o Wor l d! ”
 END FUNCTI ON

Because we are creating a DLL we need to specify the $DLL flag, which tells BCX that
we are making a DLL. To make the function HelloWorld$ visible to other applications,
we place the identifier EXPORT next to the function. Now compile the DLL by typing:
 l dal l . bat hel l od

That will create several files including hellod.c, hellod.obj, hellod.dll, hellod.exp, and
hellod.lib. Now do not delete any of these, even though they might sound useless.

The next thing we’ ll do is create a small application that will call the HelloWorld
function. So create a new file named hellocd.bas and fill it with the following code:
 LOCAL szHel l o$

szHel l o$ = Hel l oWor l d$()
PRI NT szHel l o$

If you tried to compile the code using [lcall.bat hellocd] you will get the following
message:

War ni ng hel l ocd. c: 37 mi ssi ng pr ot ot ype f or Hel l oWor l d
0 er r or s, 1 war ni ngs
hel l ocd. obj . t ext : undef i ned r ef er ence t o ' _Hel l oWor l d'

Now there are two ways you can link this. Lets try the first way. Type the following:

l cal l . bat hel l ocd hel l od. obj

Now make sure that the hellod.dll is not in that directory. If it says “Hello World!” that
means it compiled correctly and can run without the DLL. That is because you linked the
DLL’s object code with your application.

Now lets try linking your application with the DLLs library. Type the following:
 l cal l . bat hel l ocd hel l od. l i b

When you run it, windows will complain that it can not find the DLL. That is because the
DLLs code is not embedded within the application but it is embedded within the DLL. If
you move the DLL back to its orginal directory, you will see the “Hello World!” message
again!

- Page XIV -

