
How To Write Good Quality QBasic Action Games
by Jack Thomson

PDF Conversion by Thomas Antoni – www.qbasic.de

Table of Contents

PREFACE... 1
ACTION GAMES: OVERVIEW... 2

Point of View .. 3
Screen Behavior .. 3
The Main Character/Object... 3
Enemies... 4

ACTION GAMES: MULTI-PLAYER... 4
Planning .. 4
Points of View and Screen Behavior .. 4
Main Characters/Objects... 5
Enemies... 5
Key Usage... 5
Common Items.. 6

Radar ... 6
Gauges... 6
Indicators... 6
Targeting Devices ... 6

A FEW SPECIFIC SUGGESTIONS FOR ACTION GAMES.. 7
Two Player Keyboard Layouts ... 7
Graphics Related Ideas ... 7
Line Drawings... 7
GET and PUT ... 7
Times of No Action .. 8

CONCLUSION... 8

PREFACE

QBasic is a great language if you are learning how to program. It can do a very
wide variety of things, including virtually everything you need to program a good quality
computer game. Now there are some limitations to QBasic because it's what is called a
high level language. It is more English than machine code (bunches of 1's and 0's) by
far. Since the interpreter has to convert the "almost English" code into what it can
understand, then into machine code, it does take a noticeable amount of time for a
certain number of lines of code to complete running. Still, I have written many games in
QBasic, proving that it is good for something. This tutorial can be used as sort of a guide

to writing computer games. This article focuses on what is involved in writing action
games action games. (NOTE: The concepts here are not limited to QBasic, but apply for
any language in which games can be written.)

This tutorial is written for the purpose of explaining to a programmer some of the
concepts of planning, creating and programming an action computer game.

ACTION GAMES: OVERVIEW

Assuming that the users processor is fast enough, programming action games in
QBasic can be a great thrill. On a 386, some games can run a tad or more slow, but
anything from a 486 and higher can pretty much cover any QBasic game that has
reasonable enough programming. There are some things that are common to almost all
action games. This is what I will discuss first.

The moment that you start thinking about a game that you want to program, there
is planning involved. I have never programmed a game that I never did any planning for.
Yes, sometimes games get started and planning happens simultaneously, but in any
case planning does happen. This is actually fairly critical for a cool game. Here is what
has to be accounted for. First the setting and objective, both of which could determine
the other. Secondly are more details such as what must happen for the game be won or
lost. After that, anything can happen. This just a long way of saying that if you are going
to program, there has to be an objective to your efforts.

A very important requirement is the concept of controlling the game character or
object. This is a definite must. Otherwise the game obviously would have no purpose
other than something like a screen saver. The main ways for the user to get input to the
computer is through the keyboard, joystick/pad, and/or the mouse. This can all be
accomplished in QBasic. Some of the main keys to use are the up, down, left, and right
arrow keys, the space bar, tab and others. It is possible to access almost every key on
the keyboard, including differentiating between F1 and Alt+F1 or Ctrl+F1. For a single-
player game this can be perfect. With 2 player games, there are some possible minor
conflicts that could arise; I'll explain later. The joystick can sometimes be a problem
because it has to be calibrated every time the program is run. This creates a need for a
lot of bothersome code that half the time won't do much good. On the odd chance that
the joystick does work on the programmer's computer, the program is less than likely to
work on another computer unless the joystick being used is the same kind as the
programmer's. The mouse, on the other hand, is a very flexible piece of equipment and
the code used to access the mouse is almost always compatible with any other
computer with a mouse.

These days, the most focused part of a game is the way that the player(s) can
view what they are doing, usually through the graphics capabilities. The method for
doing this is through a point of view. There are only so many ways of displaying what's
going on but the most common points-of-view for games written in QBasic are top view,
side view, or a combination of both. Even then there is the options of the orientation of
the screen relative to the viewer. There are different referred ways of doing this when
comparing one and two player games, so that will be discussed in the separate sections.

Sometimes the best part of a game is its title page. This does help create some
interest for the player(s) the first time they see the game. A cool logo might make the
difference between someone trying your game or trying someone else's. They say not to
judge a book by its cover, but it still happens all the time.

ACTION GAMES: SINGLE-PLAYER
Planning

You, bad guys and a fight to the death; this is the main reasoning behind almost
any single-player computer game. Fortunately, people have made millions by making
this a little more interesting than that. There are thousands of possibilities for what the
player can be, what the enemies are, and how the fight is carried out. Balls, blobs,
people, tanks, boats, spaceships, futuristic psycho-mobiles… anything can be
programmed into what could become a really cool computer game. This just goes to
show that it really isn't hard to figure out what the setting for a single-player game is
going to be.

Point of View
For each game that is written, one of the biggest decisions that is made is that of

the point of view of the game. Is the player going to have a bird's-eye view, a side view,
or a first person point of view. Regarding graphics or the equivalent, this determines the
entire processing of the game. The first two points of view make for much easier
programming than the third. There is not much involved (none for many games) in the
way of programming 3d graphics calculations, which can cause a great disadvantage in
the availability of processing speed, not to mention the difficulty in figuring out what
equations and formulas to use. Of course, this is all assuming that you want to have the
view of your character/object "look around" the playing area. If this is not the case, a first
point of view is almost as simple as the others.

Screen Behavior
One thing that might greatly influence the decision on what point of view to use is

the behavior of the screen. Is the screen going to scroll or remain static? An example of
a scrolling screen would be a game with a space ship, viewed from above, that stays in
the center of the screen with stars going by in the direction that the ship is pointing. An
example of a static screen would be a car or something that moves around on the
screen, trying not to run into things while shooting aliens. A combination of the point of
view and the behavior of the screen is a part of game creation that should take
considerable thought. It is very unwise to start programming a game that is too difficult to
complete with much more experience than one has. It causes discouragement and it can
become a bad habit of storing up lots of uncompleted games on your hard drive.

Once the point of view and screen behavior is chosen, the bulk of the game
processes can be worked out. This includes starting to program in a few graphics such
as borders and other things that you might want on the screen. Some things that are
great for something like space ship games are gauges and indicator lights of sorts.
However, a programmer can't get too far into this process before having to start actual
programming of the game.

The Main Character/Object
If your program is going to be a side or top view, you'll need a character or object

with which to "interact" with everything else in the game. This is your good-guy. This is
where you hopefully have decided what to use for this role. If it is a box, ball, or car, it is
easy enough to draw these objects and save them into arrays for easy access with the
PUT command, even if it means saving four drawings of it, one in each direction.
However, if a person is to be the character, things get anywhere from a little to very

complicated. (see STRATEGY GAMES) Whatever you decide for your character to be, it
will still need to be drawn on the screen. Depending on the simplicity of your graphics
this can be done in different ways. This I will discuss later on.

Enemies
In any game, there is always an opponent of some sort. Aliens, space ships,

rocks, bullets, sometimes even the clock is working against the player. Hopefully, for
every game the enemies and other objects will correspond to the setting and the main
character/object of the game. For example, a spaceship and planets along with enemy
space pods and weapons will work well together. Of course there is the bizarre game
with a miniaturized car racing around a kitchen counter, proving that anything can be put
together to a somewhat reasonable game. In any case, the character or objects used in
a game should make a bit of sense together and should add to the excitement of the
game.

There are a few things to consider in creating the graphics for the enemies. The
way that the graphics for these characters or objects are drawn depends greatly on the
point of view. If it is a side or top view, you need only to draw them in much the same
manner that the player's character is. However, with a first point of view, the enemy
might need to be drawn several different sizes to represent 3-dimensionality. In the
section on programming structure I'll have more about drawing characters and objects
for a game.

ACTION GAMES: MULTI-PLAYER

Planning
The main difference between a single-player game and a multi-player game is

that instead of being against the computer, the players are against each other, unless of
course the game is the sort where both players are on the same team against the
computer. Both of these kinds of games sometimes require more planning than a single
player game. The object is more easily defined: "get the other guy". The setting and
playing characters may even be just as easy (or difficult) as with a single-player game.
This section will explain what there is involved in creating a multi-player game.

Points of View and Screen Behavior
One of the main differences in options between a one-player game and a two-

player game is how much weight is put on the decision of whether to use a certain
screen behavior/structure and the point of view. The easiest is overhead-fixed screen
view. The screen does not require scrolling (static) and both players can view
everything at once. An example of a static screen is a game like Battlefield Annihilator
(found at http://www.bitsmart.com/qbstation). For other screen behavior, adding the
attributes of scrolling and other points of view make things rapidly increasingly difficult.
A 3D map game, where each player has a 3D view from a first point of view, is not going
to work very well in QBasic if you are expecting to achieve good quality graphics.
Another difficult point of view, for any game really, is a side or top view that has a
scrolling background which contains many colors/ pixels compared to the background
color. For example, a side-scrolling game that has a man running along a downtown
street with buildings and cars rushing by might work in QBasic but it wouldn't do it very
fast. Anyway, enough about what is bad, on with the good...

Main Characters/Objects
Usually in games, each player begins with the same advantages. There are

some games that have different advantages for each player that make the game more
interesting, and that is a detail that can be worked out very easily, assuming that you
have good programming habits. Whether there is a difference in advantages or not, the
main point here is that there still should be a differentiation between the two players
game pieces. A space fighting game should at least have the opposing players' ships be
of different designs, even if the weapons and all are identical. In helping you decide
what you want your characters to be, consider the following.

Since the game is entirely dependent on conflict, there should be a good reason
for it. Aliens and men, germs and antibodies, missiles and flares, any pairs of things that
tend to conflict with one another would be acceptable, at least as long as the two
"teams", so to speak, are approximately equal. A distinct inequality will weaken the
game's ability to interest people and will be discarded.

Enemies
Yes, even in a multi-player game there can be enemies, in addition to the other

player. There can be a common danger such as an earthquake or volcano, falling off a
cliff, getting zapped by lightning, being hit by a comet or asteroid, or being grabbed and
eaten by a sea monster. Common enemies and/or dangers can be an excellent addition
to multi-player games. However, though it might enhance the excitement of the game, if
the enemy is too perilous, the game will be too hard trying to fend off the secondary
target while ignoring the primary target-the other player.

Key Usage
Many two-player games have both players using the keyboard at the same time.

This has its advantages and disadvantages. (As I promised previously, here is more
detailed discussion on this matter.) There is an advantage of somewhat
interchangeability between players if programming has been done correctly. Two similar
"maps" of keys on the keyboard can be made, so that anyone can use either side of the
keyboard with little difficulty. Using a mouse or joystick for one player and the keyboard
for another, there would be much more conflict in changing places, and this is the kind of
conflict to avoid since it can distract from the game and become frustrating. On the
keyboard, though, if one player holds a key down, expecting it to have a continuous
effect just before the other player presses a key even once, there can be confusion and
the controls seem unresponsive. The solution for this is to press the key over and over.
This is less that ideal for several kinds of games, but it is not that big of a problem for
most. Players who can't control themselves not to cheat may cause another problem. If
one player is using the arrow keys and the other is using other parts of the keyboard for
similar use, the way to disable the arrow keys for the first player is simply by holding
down the Ctrl key. This disables all the keys, of course, but this toggle can easily be
switched on and off. This can actually be done from either player. The Shift keys can
change any number keys that are being used to irrelevant inputs. I haven't found all the
problems, but even still, this is something that can easily be remedied by fair play.

It might have seemed a little confusing as to why it is important for someone to
be able to play both sides of the game. This is mainly because if there are two different
people who play one the same side all the time play together, there is conflict because
neither one knows how to control the other player. It's just one of these few things that
can gain brownie points towards the popularity of a game.

Common Items
There are some things programmed into games all over the place that help each

player fight against the other. Here is a short list of some of those things:

Radar
For multi-player games there will probably be some element of having an

advantaged viewpoint of the other player. This is a fancy way of saying radar. A radar,
probably as the most common piece of "equipment" on games, I would say is a standard
issue in games. With radar, each player knows where the other is, at least in a general
area. If you have a game that has split-scrolling screens and the characters, objects
move around a large playing area, a radar will increase the amount of contact and
conflict between the two players, also eliminating time consuming searching which would
put a negative effect on the game overall.

Gauges
If there is going to be a competition of power, which there usually is, there has to

be a way of displaying this for all to see. A player is not usually going to attack another
without knowing that the differences in power availability is going to be his/her
advantage, right? The remedy for this is a simple gauge in the form of a line or circle or
even a digital display, however you want, just as long as it gets the information across.
Gauges do determine a significant part of a game's results, so be sure to include them
where appropriate.

Indicators
If there is a selection of weapons, how is the player supposed to know which on

is selected, it wouldn't be good to waste firing a precious, heavy-duty missile at
something that would take only a simple bullet to destroy. If there were "buttons" of
sorts that could be highlighted, it would be easy to tell what is selected. This goes for
anything that might be created for the sake of saving key usage as referred to
previously. Simple lights might be good for some purposes too. An indication that an
enemy is in range for firing upon would be very useful. Or on the other side of things, a
flashing warning light could tell the player that he/she is in danger of being killed or
destroyed. One indicator that is sometimes overlooked is the score that the players
have achieved, if applicable. This may be in points or in the form of a clock. Games that
have the attributes of racing should always have a clock to show how well (or how badly)
someone is doing.

Targeting Devices
A targeting device can be designed in many ways. There is the simple top view

method that draws a circle around the opponent when in range. Another way is making
the aiming "X" controlled by the player to jump to the center of the target as long as the
aim of the gun or whatever weapon being used is aimed approximately in the right
direction. A good idea would be to have the aiming indicator be drawn around the
selected target and be able to rotate between different targets. There are many ways to
program targeting systems that fit properly in a game. If this is to be a feature in a your
game, consider the advantages and disadvantages of each method and choose the kind
that will enhance your game the most.

A FEW SPECIFIC SUGGESTIONS FOR ACTION GAMES
There are mounds of ideas that could improve the quality of games programmed

in QBasic, and I've found quite a few of them. Some are simple and easy to see, others
are so obvious they might have been missed. Some just came from years of
experience.

Two Player Keyboard Layouts
When designing a two-player game it is imperative that there is a way to control

the game, otherwise there is no purpose, as I stated before. The trick in using the
keyboard for two players is, of course, making sure that there are no keys that are
common between the two players. The Space Bar is definitely one to leave out, for
example. It is universally known as the shoot key, but not so for single-computer multi-
player games.

This is something that I have used a few times for multi-player games. If a game
does not require than 10 or 12 keys per player each player can have a kind of copy of
the controls, one on each side of the keyboard. The arrow keys correspond with S, X, Z
and C, and the keys above the arrow keys, Ins, Del, Home, End, Page Up, and Page
Down correspond with 1, Q, 2, W, 3 and E. That makes 10 keys for each player. Need
a few more? The Backspace and Enter keys are good doubles for Tilde and Tab keys.
If there is still a shortage the F-keys can be accessed. F1 to F4 go along with F9 to F12,
although the placement relative to the rest of the players' keys isn't quite as
interchangeable and some adjustment must be made in switching sides. In the case of
these extra keys, this is not too critical of a problem.

Graphics Related Ideas
There is an endless possibility of things to do with graphics. Unfortunately, only

a small fraction can be done in QBasic, especially with a slower computer. A general
rule to follow is that of keeping graphics simple enough so that the frame rate of the
game cannot be noticed.

Line Drawings
Many graphics games that are considered cool are based on line drawings. This

is not the best quality of graphics, but it does work. Line drawings focus more on
keeping the program running as fast as possible, but also delivers a decent quality
appearance. If we are talking about top-view game spaceships, the DRAW command
using TA (turn angle) can be used to draw a good looking ship which can then be erased
then drawn again at a new angle. This does let the background show though, but
PAINTing in the center of the ship will give it some body and look not too bad, especially
if you have the fill in color differ from the outline color.

GET and PUT
These are the shortcuts for animated graphics. A pre-drawn picture can be

stored in RAM as an array using GET and then can instantly be accessed through PUT.
If you have a rather complex graphic that must move around on the screen but would
take much too long in the execution cycle to redraw each time it moved, PUT is the
solution. Drawing the graphic(s) beforehand and staring them in an array can speed up
the process incredibly. “PUT (x, y), arrayname, OR” will instantly draw the graphic which
is in the specified array to the screen at the coordinates indicated. All that has to be

done then is to replace the background, if any, and PUT the graphics in it's new location.
The OR attribute indicates to QBasic that the graphic is to be superimposed on the
background.

Just for reference, replacing a complicated background can be done in much the
same way that the graphic is put on the screen. Simply save into a temporary array the
area that the graphic is to be drawn over. When the graphic should be erased, PUT the
saved background over top of the graphic, being sure to use the OR attribute as
indicated above. This then gets rid of the graphic from its old place on the screen and
replaces it with the original background. This will run into problems, though, if any part
of your background is COLOR 0.

Times of No Action
When there is no movement on the screen, it is not necessary for the unchanging

graphics to be continually be drawn on the screen as long as nothing is affecting them.
For example, if an object is no longer moving on the screen, it might be reasonable to
skip the erasing and redrawing of its graphic as long as there is no movement or other
effect such as another graphic moving over it. This can be done by a simple comparison
that makes sure the x and y velocities of the object are both 0, then, if they are, skip the
drawing and erasing subroutine. NOTE: Be sure that the input used to control the ship is
NOT in the drawing routine. Otherwise, if the object that is being controlled stops, it’s
won’t be able to start again.

CONCLUSION
Now that you have read this entire tutorial, you have barely scratched the surface

of the gaming industry, congrats. The other 90% comes from experience. The number
of failed and incomplete games that I have on my computer is embarrassing, and
through them I have learned a few things about what to do and what not to do. I hope
that this tutorial has given you a few good ideas and some worthy guidelines.

Written by Jack Thomson for
The QBasic Station
http://www.digital-forces.com

Please send questions/comments to: qbstation@hotmail.com

	Table of Contents
	PREFACE
	ACTION GAMES: OVERVIEW
	ACTION GAMES: SINGLE-PLAYER
	Planning
	Screen Behavior
	The Main Character/Object
	Enemies

	ACTION GAMES: MULTI-PLAYER
	Planning
	Points of View and Screen Behavior
	Main Characters/Objects
	Enemies
	Key Usage
	Common Items
	Radar
	Gauges
	Indicators
	Targeting Devices

	A FEW SPECIFIC SUGGESTIONS FOR ACTION GAMES
	Two Player Keyboard Layouts
	Graphics Related Ideas
	Line Drawings
	GET and PUT
	Times of No Action

	CONCLUSION

